翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

energy demand management : ウィキペディア英語版
energy demand management
Energy demand management, also known as demand side management (DSM), is the modification of consumer demand for energy through various methods such as financial incentives 〔Wei-Yu Chiu; Hongjian Sun; H.V. Poor, "Energy Imbalance Management Using a Robust Pricing Scheme," IEEE Transactions on Smart Grid, vol.4, no.2, pp.896-904, June 2013.〕 and behavioral change through education. Usually, the goal of demand side management is to encourage the consumer to use less energy during peak hours, or to move the time of energy use to off-peak times such as nighttime and weekends.〔"(Demand Management )." Office of Energy. Government of Western Australia, n.d. Web. 30 Nov. 2010.〕 Peak demand management does not necessarily decrease total energy consumption, but could be expected to reduce the need for investments in networks and/or power plants for meeting peak demands. An example is the use of energy storage units to store energy during off-peak hours and discharge them during peak hours.〔Wei-Yu Chiu; Hongjian Sun; H.V. Poor, "Demand-side energy storage system management in smart grid," 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm), pp.73,78, 5-8 Nov. 2012.〕 A newer application for DSM is to aid grid operators in balancing intermittent generation from wind and solar units, particularly when the timing and magnitude of energy demand does not coincide with the renewable generation.〔Jeffery Greenblatt; Jane Long, "California’s Energy Future: Portraits of Energy Systems for Meeting Greenhouse Gas Reduction Targets," California Council on Science and Technology, pp. 46-47, Sept. 2012.〕
The term DSM was coined following the time of the 1973 energy crisis and 1979 energy crisis.〔Torriti, Jacopo (2016) "Peak energy demand and Demand Side Response" (Routledge): https://www.routledge.com/products/9781138016255〕 Governments of many countries mandated performance of various programs for demand management. An early example is the National Energy Conservation Policy Act of 1978 in the U.S., preceded by similar actions in California and Wisconsin. Demand Side Management was introduced publicly by Electric Power Research Institute (EPRI) in the 1980s. Nowadays, DSM technologies become increasingly feasible due to the integration of information and communications technology and the power system, resulting in a new term: Smart Grid.
==Operation==
Electricity use can vary dramatically on short and medium time frames, largely dependent on weather patterns. Generally the wholesale electricity system adjusts to changing demand by dispatching additional or less generation. However, during peak periods, the additional generation is usually supplied by less efficient ("peaking") sources. Unfortunately, the instantaneous financial and environmental cost of using these "peaking" sources is not necessarily reflected in the retail pricing system. In addition, the ability or willingness of electricity consumers to adjust to price signals by altering demand (elasticity of demand) may be low, particularly over short time frames. In many markets, consumers (particularly retail customers) do not face real-time pricing at all, but pay rates based on average annual costs or other constructed prices.
Energy demand management activities attempt to bring the electricity demand and supply closer to a perceived optimum, and helps give electricity end users more direct price signals to adjust their usage or automated signals to change load depending on system conditions. These system conditions could be peak times, or in areas with levels of Variable renewable energy, during times when demand must be adjusted upward to avoid overgeneration or downward to help with ramping needs.
Adjustments to demand can occur in various ways: through responses to price signals, such as permanent differential rates for evening and day times or occasional highly priced usage days, behavioral changes achieved through home area networks, automated controls such as with remotely controlled air-conditioners, or with permanent load adjustments with energy efficient appliances.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「energy demand management」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.